

Available online at www.sciencedirect.com

Tetrahedron Letters 47 (2006) 5119-5122

Tetrahedron Letters

A simple, catalytic H₂-hydrogenation method for the synthesis of fine chemicals; hydrogenation of protoporphyrin IX dimethyl ester

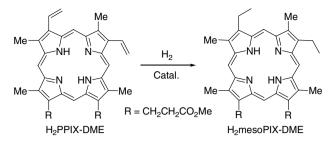
Júlio S. Rebouças and Brian R. James*

Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1

Received 22 April 2006; revised 12 May 2006; accepted 12 May 2006 Available online 6 June 2006

Abstract—A conceptually simple H_2 -hydrogenation protocol is introduced for the high-yield preparation of a natural product derivative. Protoporphyrin IX dimethyl ester is hydrogenated to the mesoporphyrin analogue in *N*,*N*-dimethylacetamide under H_2 (1 atm) at 80 °C within 30 min. The reaction is catalyzed by commercial RuCl₃, without the need for the use of phosphine- and/ or carbene-based ligands.

© 2006 Elsevier Ltd. All rights reserved.


Catalytic hydrogenations are key reactions for organic synthesis in both laboratory and industrial scales.¹⁻⁸ Because H_2 is the cleanest reducing agent, there has been a great deal of interest in developing robust homogeneous catalysts to attain efficient H₂-hydrogenations of a variety of C=C, C=O, and C=N functionalities.¹⁻¹¹ Historically, the catalysts in these systems 'evolved' from simple late-transition metal salts to platinum metal-based complexes containing phosphine as ligands;^{2,8,9} more recently, carbene-containing species have received attention due to their ability to mimic the reactivities of their phosphine counterparts.¹² This catalyst evolution was initially driven by interests in the organometallic chemistry of reaction intermediates and coincided with the development of very active catalysts such as the so-called Wilkinson's catalyst;⁹ this represented the origins of the usual phosphine/platinum-metal combination that has dominated the hydrogenation literature since the mid-1960s.^{1,2,8,9} Whereas in most of the hydrogenation systems the appropriate choice of the phosphine represents a means of controlling catalytic efficiency and/or selectivity,¹⁻¹¹ the actual role of the phosphine ligands is not always obvious and, in some cases, these ligands is may play no role.^{13,14} Our group, for example, while studying the catalytic properties of some Ni(II)-phosphine complexes for hydrogen transfer hydrogenation of ketones, observed that simple NiX2 salts had comparable (X = Cl) or even higher activity (X = Br, I) than Ni-phosphine complexes themselves.^{13,14} Evidently, depending on the catalytic conditions (solvent, temperature, additives, substrate), efforts in designing ligand systems for metal complex catalysts may be unnecessary.

It was first reported in the 1960s that N,N-dimethylacetamide (DMA) solutions of RuCl₃ were able to perform H₂-hydrogenation of simple olefins (e.g., maleic and fumaric acids) under mild conditions.^{15–22} Despite the intrinsic, conceptual advantages of the RuCl₃–DMA method, that is, no need to prepare ligands or their metal complexes and the low-cost of Ru (compared to the other platinum group metals), there has been no report on the use of this protocol for organic synthesis. In this communication, the convenience of this simple, phosphine-free, RuCl₃-based method is explored for the high-yield preparation of mesoporphyrin IX dimethyl ester (H₂mesoPIX-DME) via H₂-hydrogenation of protoporphyrin IX dimethyl ester (H₂PPIX-DME), which involves reduction of vinyl to ethyl groups (Scheme 1).

Because such reduction results in a more stable compound than the parent H₂PPIX,²³ H₂mesoPPIX and its metal complexes have been extensively used in a variety of chemical, biological, and clinical studies.^{24–51} The choice of mesoPIX is sometimes dictated by the incompatibility of the vinyl groups of PPIX with the harsh conditions required for the synthesis of heme analogues.²⁴ Whereas mesoPIX complexes have been traditionally used for studies of reconstituted heme proteins and enzymes (e.g., myoglobin and horseradish

^{*}Corresponding author. Tel.: +1 604 822 6645; fax: +1 604 822 4827; e-mail: brj@chem.ubc.ca

^{0040-4039/\$ -} see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.05.083

Scheme 1.

peroxidases),^{24–36} mesoPIX derivatives have also been particularly useful in studying enzymes such as ferrochelatase^{37–40} and heme oxygenase (HO),^{41–43} in following heme trafficking within living cells,⁴⁴ and in understanding aspects of the synthesis of antihemostatics by bloodsucking insects.⁴⁵ The clinical use of a mesoPIX complex, Sn(mesoPIX)Cl₂, for the treatment of hyperbilirubinemia in infants (neonatal jaundice) relies on the potent inhibitory effect that this compound exerts on HO.^{46,47} Such an effect has also been explored for functional imaging of HO gene expression in living animals.⁴⁸ Of note, Sn(mesoPIX)Cl₂ is a stronger HO inhibitor than is Sn(PPIX)Cl₂.⁴¹

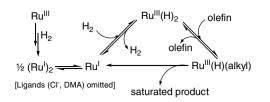
The H₂-hydrogenation of H₂PPIX-DME, or its chloro-Fe(III) complex, has been traditionally accomplished by using one of three literature protocols $(A, {}^{52}B, {}^{53,54})$ and C;⁵⁵ Table 1). In Method A, which is an optimized protocol⁵² of Taylor's procedure,⁵⁷ Fe(PPIX)Cl is hydrogenated in 90% formic acid using wet PdO as catalyst, and quantitative demetalation of the protohemin occurs concomitantly; although the method affords H₂PPIX in relative high yields, it uses high loadings of Pd per vinyl group (Table 1). A modification uses Pd on carbon (Pd/C) as catalyst and anhydrous formic acid as solvent (Method B); the course of the reaction needs to be monitored spectrophotometrically as over-reduction may occur to yield a chlorin-type compound that shows a UV–vis band at ${\sim}650$ nm 54 In an attempt to prevent the formation of side-products that generally accompanied the earlier hydrogenations and contaminated the isolated products,⁵⁶ Baker et al.⁵⁵ proposed that the hydrogenation of Fe(PPIX)Cl be carried out in aqueous KOH solution (0.2 mol L^{-1}) catalyzed by PtO₂ (Method C); the crude hydrogenation product is then demetalated with concd H₂SO₄. Indeed, although over-reduction has not been observed in Method C55 and the yield of H_2 mesoPIX is comparable to those of Methods A and B (Table 1), the amount of Pt per vinyl group is almost stoichiometric and the 16 h reaction time is long (likely because of the low temperature used in this method).

Method D emerged as an adaptation of the PtO₂-catalyzed reduction of 'RuCl₃' by H₂ in DMF,⁵⁸ where the organic substrate H₂PPIX-DME replaced the inorganic substrate 'RuCl₃'. In this Method, H₂PPIX-DME and PtO₂ in DMF were warmed at 60 °C for 30 min under H_2 (1 atm).⁵⁹ The end of the reaction was detected by the disappearance of the UV-vis bands for H₂PPIX-DME; the appearance of a small band at \sim 650 nm at high conversions indicated that reduction of the vinyl groups was accompanied also by some reduction at the ring as reported previously in Methods A and B;^{54,57} the nature of this 'chlorin'-type compound was not investigated further, but the impurity can easily be removed by filtration through a neutral Al₂O₃ plug using CHCl₃ (containing 0.75% EtOH) as eluent. The compromise between heating time and product selectivity has been noted.54,57 Nevertheless, the H2mesoPIX vield in Method D is close to that of Method C, using \sim 5 times less catalyst load than that used in C; furthermore, the experimental setup for Method D is convenient as DMF and PtO₂ are used as received, and the work-up procedure is simple. Although no effort was made to recover the PtO₂ catalyst, in larger scale reactions PtO₂ may be filtered off after hydrogenation is completed. Of note, a drawback of Method D is that PtO_2 should not be exposed to mixtures of O_2 (air) and H₂ as a fire may occur; the experimental procedure thus requires flushing with N_2 at the beginning and at the end of the catalytic hydrogenation.⁵⁹

Given that for the preparation of small quantities of H_2 mesoPIX-DME on a laboratory-scale, recovery and recycling of the catalyst are not usually a concern, the use of a homogeneous catalyst (vs a heterogeneous one) is justified. The modification of the vinyl groups of H_2 PPIX-DME and its Zn(II) or Ni(II) complexes via homogeneous catalysis has received some attention recently. For example, Pereira and coworkers^{60,61} found that homogeneous hydroformylation of M(PPIX-DME) (M = H_2, Ni, Zn) can be efficiently accomplished by the use of Rh-phosphine catalysts, while Dolphin and coworkers⁶² reported that olefins and M(PPIX-DME) (M = H_2, Zn) undergo cross-metathesis reactions catalyzed by Grubbs-type, Ru-phosphine/carbene catalysts.

Table 1. Catalytic hydrogenation of protoporphyrin IX derivatives under 1 atm H₂

Method	Catalyst (mmol metal)	Solvent (volume)	Vinyl group/catalyst	<i>T</i> /°C	t/min	% Yield	Ref.
A ^a	PdO (57.1)	HCO ₂ H (3 L)	2.15	96	60	82 ^c	52
B ^b	Pd/C (0.705)	HCO ₂ H _(anhydrous) (120 mL)	4.80	50	45	95 ^{c,d}	53,54
C^{a}	PtO ₂ (8.81)	KOH _(aq) (1.5 L)	1.39	25	960	85 ^e	55
D^{b}	PtO ₂ (0.014)	DMF (50 mL)	7.43	60	30	81 ^c	This work
E^{b}	'RuCl ₃ ' (0.008)	DMA (10 mL)	8.75	80	30	86 ^c	This work


^a Using Fe(PPIX)Cl as starting material; acidic demetalation of crude product mixture yields H₂mesoPIX.

^b Using H₂PPIX-DME as starting material.

^c Isolated as H₂mesoPIX-DME.

^d Purity has been questioned.⁵⁶

^e Isolated as H₂mesoPIX.

Although Wilkinson-type catalysts, RhCl(PPh₃)₃ or $RuCl_2(PPh_3)_3$, are the usual choice for H₂-hydrogenation of terminal olefins,¹ the replacement of PtO₂ (Method D) by these phosphine complexes would result in the introduction of an extra step in the synthetic protocol for H₂-hydrogenation of H₂PPIX-DME, that is, the preparation and isolation or purchase of these expensive catalysts. In order to maintain the relative simplicity of Method D, an alternative, RuCl₃-based catalytic system was investigated. The ability of DMA or DMF solutions of RuCl₃ to catalyze the H₂-hydrogenation of simple olefins has long been recognized,²² but applications in organic synthesis have remained unexplored. Whereas the kinetic and mechanistic aspects of this phosphinefree, RuCl₃-based hydrogenation system are relatively complex (Scheme 2), $^{15-21}$ the experimental one-pot procedure is simple: DMA solutions of RuCl₃ are warmed to 60-80 °C and reacted with H_2 (1 atm) for 1-2 h to generate a Ru(I)-DMA complex in situ; substrate hydrogenation is then initiated by addition of the olefin.^{15,18} A successful H₂-hydrogenation of H₂PPIX-DME via this method (Method E; Table 1) was accomplished.63 Indeed, Method E combines all the advantages listed for Method D with one additional feature: Ru is the cheapest of the platinum group metals, and indeed RuCl₃ can often be acquired free as 'on loan' material from several suppliers. Analogously to methods A, B, and D, formation of the over-reduced, chlorintype product (band at $\sim 650 \text{ nm}$) is observed at high conversion. The work-up procedure for Method E is identical to that of Method D and the isolated H₂mesoPIX-DME samples from either method are The and indistinguishable. convenient efficient H₂-hydrogenation of H₂PPIX-DME via Method E represents the first example of the use of the simple, phosphine-free, RuCl₃-DMA catalytic system in organic synthesis of fine chemicals.

Acknowledgments

We thank the NSERC of Canada for financial support and Colonial Metals Inc. for a loan of $RuCl_3 xH_2O$. J.S.R. acknowledges Fundação CAPES (The Ministry of Education of Brazil) and The University of British Columbia for graduate scholarships.

References and notes

 Chaloner, P. A.; Esteruelas, M. A.; Joó, F.; Oro, L. A. In Homogeneous Hydrogenation; Kluwer Academic Press: Dordrecht, 1994; Chapter 4, pp 119–181.

- Blaser, H.-U.; Malan, C.; Pugin, B.; Spindler, F.; Steiner, H.; Studer, M. Adv. Synth. Catal. 2003, 345, 103–151.
- 3. Blaser, H.-U. Adv. Synth. Catal. 2002, 344, 17-31.
- Knowles, W. S. Angew. Chem., Int. Ed. 2002, 41, 1998– 2007.
- 5. Noyori, R. Angew. Chem., Int. Ed. 2002, 41, 2008-2022.
- 6. James, B. R. Catal. Today 1997, 37, 209-221.
- 7. Rylander, P. N. In *Catalytic Hydrogenation in Organic Synthesis*; Academic Press: New York, 1979.
- 8. Joó, F. In *Aqueous Organometallic Catalysis*; Kluwer Academic Press: Dordrecht, 2001; pp 47–148.
- James, B. R. In *Homogeneous Hydrogenation*; John Wiley & Sons: New York, 1973.
- 10. Clapham, S. E.; Hadzovic, A.; Morris, R. H. Coord. Chem. Rev. 2004, 248, 2201–2237.
- Naota, T.; Takaya, H.; Murahashi, S.-I. Chem. Rev. 1998, 98, 2599–2660.
- 12. Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290–1309.
- 13. Le Page, M. D.; James, B. R. Chem. Commun. 2000, 1647– 1648.
- Le Page, M. D.; Poon, D.; James, B. R. In *Catalysis of Organic Reactions*; Morrell, D. G., Ed.; Marcel Dekker: New York, 2003; Chapter 6, pp 61–72.
- 15. Hui, B.C.-Y. Ph.D. Dissertation, The University of British Columbia, 1969.
- 16. Hui, B.; James, B. R. Chem. Commun. 1969, 198-199.
- 17. James, B. R.; McMillan, R. S.; Ochiai, E. Inorg. Nucl. Chem. Lett. 1972, 8, 239–243.
- 18. Hui, B. C.; James, B. R. Can. J. Chem. 1974, 52, 3760-3768.
- 19. Ref. 9, pp 94-96.
- 20. James, B. R. Inorg. Chim. Acta Rev. 1970, 73-95.
- 21. Hui, B. C.; James, B. R. Can. J. Chem. 1974, 52, 348-357.
- 22. Halpern, J.; Harrod, J. F.; James, B. R. J. Am. Chem. Soc. 1966, 88, 5150–5155.
- Smith, K. M. In *Porphyrins and Metalloporphyrins*; Smith, K. M., Ed.; Elsevier: Amsterdam, 1975; p 50. Appendix.
- 24. Morishima, I.; Shiro, Y.; Nakajima, N. *Biochemistry* **1986**, 25, 3576–3584.
- Srivastava, T. S. Biochim. Biophys. Acta 1977, 491, 599– 604.
- Paulson, D. R.; Addison, A. W.; Dolphin, D.; James, B. R. J. Biol. Chem. 1979, 254, 7002–7006.
- Horrocks, W. De W., Jr.; Venteicher, R. F.; Spilburg, C. A.; Vallee, B. L. Biochem. Biophys. Res. Commun. 1975, 64, 317–322.
- 28. Asakura, T. Methods Enzymol. 1978, 52, 447-455.
- Marshall, A. G.; Lee, K. M.; Martin, P. W. J. Am. Chem. Soc. 1980, 102, 1460–1462.
- Aoyama, Y.; Aoyagi, K.; Toi, H.; Ogoshi, H. Inorg. Chem. 1983, 22, 3046–3050.
- Ignarro, L. J.; Ballot, B.; Wood, K. S. J. Biol. Chem. 1984, 259, 6201–6207.
- Axup, A. W.; Albin, M.; Stephen, S. L.; Crutchley, R. J.; Gray, H. B. J. Am. Chem. Soc. 1988, 110, 435–439.
- Cowan, J. A.; Gray, H. B. Inorg. Chem. 1989, 28, 2074– 2078.
- Shiro, Y.; Takeda, M.; Morishima, I. J. Am. Chem. Soc. 1988, 110, 4030–4035.
- 35. Ishida, Y.; Konishi, K.; Nagamune, T.; Aida, T. J. Am. Chem. Soc. **1999**, 121, 7947–7948.
- Ryabova, E. S.; Rydberg, P.; Kolberg, M.; Harbitz, E.; Barra, A. L.; Ryde, U.; Andersson, K. K.; Nordlander, E. J. Inorg. Biochem. 2005, 99, 852–863.
- Venkateshrao, S.; Yin, J.; Jarzecki, A. A.; Schultz, P. G.; Spiro, T. G. J. Am. Chem. Soc. 2004, 126, 16361–16367.
- Kawamura-Konishi, Y.; Aoki, T.; Satoh, N.; Katagiri, M.; Suzuki, H. J. Mol. Catal. B: Enzym. 2004, 31, 9–17.

- Franco, R.; Bai, G.; Prosinecki, V.; Abrunhosa, F.; Ferreira, G. C.; Bastos, M. *Biochem. J.* 2005, 386, 599– 605.
- Hansson, M. D.; Lindstam, M.; Hansson, M. J. Biol. Inorg. Chem. 2006, 11, 325–333.
- Drummond, G. S.; Galbraith, R. A.; Sardana, M. K.; Kappas, A. Arch. Biochem. Biophys. 1987, 255, 67–74.
- Koeppen, A. H.; Dickson, A. C.; Smith, J. J. Neuropathol. Exp. Neurol. 2004, 63, 587–597.
- Turkseven, S.; Kufer, A.; Mingone, C. J.; Kaminski, P.; Inaba, M.; Rodella, L. F.; Ikehara, S.; Wolin, M. S.; Abraham, N. G. Am. J. Physiol. 2005, 289, H701–H707.
- 44. Lara, F. A.; Lins, U.; Bechara, G. H.; Oliveira, P. L. J. *Exp. Biol.* **2005**, 208, 3093–3101.
- Mesquita, R. D.; de Oliveira, F. M. B.; Shugar, D.; Fantappie, M. R.; Silva-Neto, M. A. C. *Biochem. Biophys. Res. Commun.* 2005, 335, 690–699.
- Kappas, A.; Drummond, G. S.; Munson, D. P.; Marshall, J. R. Pediatrics 2001, 108, 1374–1377.
- 47. Rubaltelli, F. F. Drugs 1998, 56, 23-30.
- Zhang, W.; Contag, P. R.; Stevenson, D. K.; Contag, C. H. Proc. SPIE 1999, 3600, 130–135.
- Luk, S. Y.; Williams, J. O. J. Chem. Soc., Chem. Commun. 1989, 158–159.
- 50. Sakamoto, M.; Ueno, A.; Mihara, H. Chem. Commun. 2000, 1741–1742.
- 51. Kepczynski, M.; Eherenberg, B. *Photochem. Photobiol.* **2002**, *76*, 486–492.
- Caughey, W. S.; Alben, J. O.; Fujimoto, W. Y.; York, J. L J. Org. Chem. 1966, 31, 2631–2640.
- 53. Muir, H. M.; Neuberger, A. Biochem. J. 1949, 45, 163-170.
- Fuhrhop, J.-H.; Smith, K. M. In *Porphyrins and Metal-loporphyrins*; Smith, K. M., Ed.; Elsevier: Amsterdam, 1975; Chapter 19, p 773.
- 55. Baker, E. W.; Ruccia, M.; Corwin, A. H. Anal. Biochem. **1964**, *8*, 512–518.
- 56. Baker, E. W.; Lachman, M.; Corwin, A. H. Anal. Biochem. 1964, 8, 503-511.
- 57. Taylor, J. F. J. Biol. Chem. 1940, 135, 569-595.
- Judd, R. J.; Cao, R.; Biner, M.; Armbruster, T.; Bürgi, H.-B.; Merbach, A. E.; Ludi, A. *Inorg. Chem.* 1995, 34, 5080–5083.
- 59. A 125 mL three-neck-round-bottom flask fitted with a reflux condenser and an oil-bubbler was charged with H₂PPIX-DME (30.9 mg, 0.052 mmol), PtO₂ (3.21 mg, 0.014 mmol), and DMF (50 mL), and the mixture was warmed to 60 °C with magnetic stirring. The purple solution was flushed with N₂ for 10 min before H₂ was introduced. The mixture was kept at 60 °C under a slow flow of H₂ for 30 min, when the UV-vis spectrum of a sample of the mixture showed complete conversion to H₂mesoPIX-DME (the 630 nm band of H₂PPIX-DME is replaced by the 620 nm band of H₂mesoPIX-DME⁵⁷). The

mixture was flushed with N₂ for 5 min, opened to the atmosphere, and concentrated to ~5 mL. Water (50 mL) was added and the suspension was then filtered through Celite. The purple solid was washed with H₂O, and then MeOH, and collected by elution with CH₂Cl₂; a black solid (presumably PtO₂) remained on the Celite pad. The CH₂Cl₂ solution was evaporated to dryness and the resulting solid was dissolved in ~5 mL of CHCl₃ (used as received, containing 0.75% EtOH). This solution was percolated through a neutral Al₂O₃ (Brockmann activity I) plug. The filtrate was collected and evaporated to dryness. The purple solid was further dried in an Abderhalden pistol (EtOH) overnight. Yield: 24.7 mg (81%). Characterization data are below.⁶³

- Peixoto, A.; Pereira, M. M.; Neves, M. G. P. M. S.; Silva, A. M. S.; Cavaleiro, J. A. S. *Tetrahedron Lett.* 2003, 44, 5593–5595.
- Peixoto, A. F.; Pereira, M. M.; Sousa, A. F.; Pais, A. A. C.; Neves, M. G. P. M. S.; Silva, A. M. S.; Cavaleiro, J. A. S. J. Mol. Catal. A: Chem. 2005, 235, 185–193.
- Liu, X.; Sternberg, E.; Dolphin, D. Chem. Commun. 2004, 852–853.
- 63. The apparatus described above⁵⁹ was charged with 'RuCl₃' (1.91 mg, 0.008 mmol in Ru) and DMA (10 mL), and the mixture was warmed to 80 °C with magnetic stirring. The resulting brownish-red solution was flushed 10 min with Ar and then a slow flow of H₂ was introduced at 80 °C for 1.5 h, during which time the color changed to pale yellow. H₂PPIX-DME (20.7 mg, 0.035 mmol), contained in a glass half-capsule, was then added. After 30 min, the UV-vis spectrum of a sample aliquot showed complete conversion. The mixture was cooled to room temperature, flushed with Ar for 5 min, opened to the atmosphere, and concentrated to $\sim 5 \text{ mL}$. The work-up procedure for isolation of H₂mesoPIX-DME was identical to that described above,⁵⁹ except that Ru salts were eliminated in the H₂O/MeOH washings. Yield: 17.9 mg (86%). Anal. Calcd for H₂mesoPIX-DME, C₃₆H₄₂N₄O₄: C, 72.70; H, 7.12; N, 9.42. Found: C, 72.91; H, 7.11; N, 9.74. UV-vis (CH₂Cl₂): 398 nm $(\log \varepsilon/L \text{ mol}^{-1} \text{ cm}^{-1})$ 5.15), 498 (4.10), 532 (3.94), 568 (3.76), 620 (3.61). IR (KBr): 3314 cm⁻¹ ($v_{\rm NH}$), 1735 ($v_{\rm CO}$). ¹H NMR (CDCl₃): δ 10.10, 10.09 (2 s, 4H, meso-H), 4.42 (t, 4H, ${}^{3}J_{HH} = 7.59$ Hz, $CH_{2}CH_{2}CO_{2}$), 4.08 (q, 4H, ${}^{3}J_{HH} = 7.62$, $CH_{2}CH_{3}$), 3.65 (s, 6H, $CO_{2}CH_{3}$), 3.64, 3.62 (2s, 12H, CH_{3}), 3.28 (t, 4H, ${}^{3}J_{HH} = 7.59$, $CH_{2}CO_{2}$), 1.85 (t, 6H, ${}^{3}J_{HH} = 7.62$, CH₂CH₃). ESI-MS (9:1 MeOH/CH₂Cl₂, positive mode): m/z 595 (100%, [H₂mesoPIX-DME+H]⁺). Spectroscopic data agree with those reported.^{52,54,64,65}
- Smith, K. M. In *Porphyrins and Metalloporphyrins*; Smith, K. M., Ed.; Elsevier: Amsterdam, 1975; pp 872–877. Appendix.
- 65. Caughey, W. S.; Koshi, W. S. Biochemistry 1962, 1, 923-931.